Suites géométriques

I) Définition

Soit (u_n) une suite. On dit qu'elle est géométrique lorsque chaque terme s'obtient en multipliant au précédent un même nombre réel q constant appelé raison.

$$u_{n+1} = qu_n$$

Cette formule s'appelle formule de récurrence.

Exemple 1 : Une voiture, achetée neuve qui coûtait 20 000 € en 2008, perd chaque année 20% de sa valeur.

• Au bout d'un an : la voiture coûtait 20% moins cher :

20 000 × (1 -
$$\frac{20}{100}$$
) = 20 000 × **0,8** = 16 000. En 2009 la voiture coûtera 16 000 €.

• Au bout de deux ans la voiture a perdu encore 20% de sa valeur :

16 000 × (1 -
$$\frac{20}{100}$$
) = 16 000 × **0,8** = 12 800. En 2010 la voiture coûtait 12 800 €.

• Au bout de trois ans la voiture a perdu encore 20% de sa valeur :

12 800 × (1 -
$$\frac{20}{100}$$
) = 12 800 × **0,8** = 10 240. En 2011 la voiture coûtait 10 240.€.

Et ainsi de suite ... on multiplie la valeur de la voiture de l'année précédente par 0,8 pour obtenir celle de l'année suivante.

Soit u_0 la valeur de la voiture en 2008. u_0 = 20 000

 u_1 est la valeur de la voiture au bout d'un an c'est-à-dire $u_1 = u_0 \times \mathbf{0.8} = 16\,000$

 u_2 est la valeur de la voiture au bout de deux ans c'est-à-dire $u_2 = u_1 \times \mathbf{0,8} = 12800$

Soit u_n la valeur de la voiture au bout de n années, $u_n = u_{n-1} \times \mathbf{0,8}$

Cette suite est géométrique : On passe d'un terme au suivant en multipliant toujours pas le même nombre (dans notre cas 0,8)

Et pour tout n de \mathbb{N} , $u_{n+1} = 0$, $8u_n$

Exemple 2 : Soit (u_n) la suite géométrique de raison 3 et de premier terme 2

- **1.** Exprimer u_{n+1} en fonction de u_n
- **2.** Calculer u_1 ; u_2 ; u_3

Réponse :

1. Pour tout n appartenant à \mathbb{N} , $u_{n+1} = 3u_n$ et $u_0 = 2$

On passe d'un terme au suivant en multipliant toujours par 3

2)
$$u_1 = u_0 \times 3 = 2 \times 3 = 6$$
 $u_1 = 6$
 $u_2 = u_1 \times 3 = 6 \times 3 = 18$ $u_2 = 18$
 $u_3 = u_2 \times 3 = 18 \times 3 = 54$ $u_3 = 54$

II) Forme explicite d'une suite géométrique

 $(u_n)_{n\geq n_0}$ est une suite géométrique de premier terme u_p et de raison q

Soit $(u_n)_{n\geq p}$, une suite, et n un entier naturel supérieur ou égal à p,

On peut obtenir directement la valeur de u_n à partir de celle de u_p en appliquant la formule suivante :

$$u_n = u_p \times q^{(n-p)}$$

Cas particulier où le 1er rang est 0 : $u_n = u_0 \times q^n$

Cette formule est appelée forme explicite de la suite

Remarques:

La **formule de récurrence** est incommode dans le cas où il s'agit de calculer un terme de rang élevé.

Par exemple, pour calculer u_{28} à partir de u_0 , il faut effectuer 28 multiplications par le nombre q.

C'est inefficace!

Il convient dans ce cas d'employer la seconde formule, appelée formule directe.

Les deux formules sont équivalentes : toute suite qui, pour tout entier n, vérifie l'une des formules vérifie l'autre.

Exemples:

Exemple 1 : Soit la suite (u_n) définie par : $u_{n+1} = u_n \times 3$ et $u_0 = 2$

- 1) Justifier que cette suite est géométrique
- 2) Calculer u_1 ; u_2 ; u_3 puis u_{15}
- 3) Calculer u_n en fonction de n

Réponse :

1) Pour tout n appartenant à \mathbb{N} , $u_{n+1} = u_n \times 3$. On passe d'un terme au suivant en multipliant toujours par 3, la suite est donc géométrique de raison 3 et de premier terme 2.

2)
$$u_1 = u_0 \times 3 = 2 \times 3 = 6$$
 $u_1 = 6$ $u_2 = u_1 \times 3 = 6 \times 3 = 18$ $u_2 = 18$

$$u_3 = u_2 \times 3 = 18 \times 3 = 54$$
 $u_3 = 54$

On applique la 2^{ème} formule :

$$u_{15} = u_0 \times 3^{15}$$

 $u_{15} = 2 \times 3^{15}$ $u_{15} = 28 697 814$

3)
$$u_n = u_0 \times 3^n$$
 $u_n = 2 \times 3^n$

Exemple 2 : Soit la suite (u_n) définie par :

$$u_{n+1} = \frac{u_n}{2}$$
 et $u_1 = 3$

- 1) Justifier que cette suite est géométrique
- 2) Calculer u_2 ; u_3 ; u_4 puis u_{30}
- 3) Calculer u_n en fonction de n

Réponse :

1) Pour tout n appartenant à \mathbb{N} , $u_{n+1} = u_n \times \frac{1}{2}$. On passe d'un terme au suivant en multipliant toujours par $\frac{1}{2}$. La suite est donc géométrique de raison $\frac{1}{2}$ et de premier terme 3.

2)
$$u_2 = \frac{u_1}{2} = \frac{3}{2} = 1,5$$
 $u_2 = 1,5$ $u_3 = \frac{u_2}{2} = \frac{1,5}{2} = 0,75$ $u_3 = 0,75$ $u_4 = \frac{u_3}{2} = \frac{0,75}{2} = 0,75$ $u_4 = 0,375$

On applique la 2^{ème} formule :

$$u_{30} = u_1 \times \left(\frac{1}{2}\right)^{30-1}$$
 le 1er terme de la suite est u_1 au lieu de u_0 La suite a donc un terme de moins donc la formule est $u_n = u_1 \times q^{(n-1)}$

$$u_{30} = 3 \times \left(\frac{1}{2}\right)^{29}$$
 $u_{30} = \frac{3}{2^{29}}$

3)
$$u_n = u_1 \times q^{(n-1)}$$

$$u_n = 3 \times \left(\frac{1}{2}\right)^{(n-1)}$$
 $u_n = \frac{3}{2^{n-1}}$

Exemple 3 : Soit la suite (u_n) définie par : $u_n = \frac{5^{n+1}}{4^n}$

- 1. Montrer que pour tout entier n, $u_n = 5 \times \left(\frac{5}{4}\right)^n$
- 2. Montrer que u est une suite géométrique. Préciser sa raison et son premier terme u_0

Réponse :

- **1.** Pour tout n appartenant à \mathbb{N} , $u_n = \frac{5^{n+1}}{4^n} = \frac{5 \times 5^n}{4^n} = 5 \times \frac{5^n}{4^n} = 5 \times \left(\frac{5}{4}\right)^n$
- **2**. Pour tout n appartenant à \mathbb{N} , $u_{n+1} = 5 \times \left(\frac{5}{4}\right)^{n+1} = 5 \times \left(\frac{5}{4}\right)^n \times \frac{5}{4} = u_n \times \frac{5}{4}$

La suite est donc géométrique de raison $\frac{5}{4}$. Son premier terme est $u_0 = 5$

$$u_0 = \frac{5^1}{4^0} = \frac{5}{1}$$

III) Sens de variation d'une suite géométrique

1) Propriété

Soit $(u_n)_{n\geq n_0}$ une suite géométrique de raison q (q>0) et de 1^{er} terme strictement positif.

0 < q < 1	q > 1	q = 1
(u_n) est strictement décroissante.	(u_n) est strictement croissante.	(u_n) est constante.

2) Exemples

Exemple 1:

Etudier le sens de variation de la suite (u_n) définie par :

$$u_{n+1} = u_n \times 3 \text{ et } u_0 = 2$$

Réponse :

Pour tout n appartenant à \mathbb{N} , $u_{n+1} = u_n \times 3$

la suite (u_n) est une suite géométrique de raison 3 > 1

La suite (u_n) est donc croissante.

Exemple 2:

Etudier le sens de variation de la suite (u_n) définie par :

$$u_{n+1} = u_n \times \frac{1}{2}$$
 et $u_0 = 2$

Réponse :

Pour tout n appartenant à \mathbb{N} , $u_{n+1} = u_n \times \frac{1}{2}$

la suite (u_n) est une suite géométrique de raison $0<\frac{1}{2}<1$ avec $u_0>0$ La suite (u_n) est donc décroissante.