Suites numériques

I) Définition

On compte des objets. Compter, c'est associer à des entiers naturels un objet d'une collection donnée.

Exemple 1: Une suite logique comme: 1; 3; 5; 7

Exemple 2:

On peut ainsi définir de très nombreuses suites, en fait, dès que l'on compte une collection d'objets, on fabrique une suite :

- Les concurrents d'une course avec leurs numéros de dossards ;
- Les concurrents de la même course avec leur ordre d'arrivée ;
- Les cartes dans un jeu ;
- Des nombres, comme les décimales d'un nombre donné ;
- Des nombres encore avec des échéances mensuelles comme un loyer, un salaire.

En général, dans les classes de lycée, on appellera « suite » ou « suite numérique » et on notera $(u_n)_{n\geq n_0}$ la collection où, pour tout entier $n\geq n_0$, tout objet u_n est un nombre. Le plus souvent, on s'intéressera aux cas où la collection possède une infinité de termes.

Définition

- ullet Une suite est une fonction u définie sur $\mathbb N$ qui, a un entier naturel n, associe u(n) noté u_n
- u_n est le terme de rang n (ou d'indice n)
- u_{n+1} est le terme qui suit le terme u_n
- Si pour tout $n \ge n_0$ on a la suite $(u_n)_{n \ge n_0}$ alors dans ce cas : u_{n_0} est le premier terme de la suite

Si $n_0 = 0$ alors u_0 est le premier terme

• Dans un repère, la représentation graphique de la suite u est l'ensemble des points A_n de coordonnées $(n ; u_n)$

Remarque : Une suite (u_n) peut n'être définie qu'à partir d'un rang 1. Dans ce cas, la suite est définie dans \mathbb{N}^* et sa valeur initiale est u_1

Exemple 1 : On définit la suite (u_n) par : $u_n = 3n - 2$

Cette suite est définie sur \mathbb{N} , c'est-à-dire pour tout entier naturel $n \geq 0$

u est une application de $\mathbb N$ vers $\mathbb R$

$$u: \mathbb{N} \to \mathbb{R}$$

 $n \mapsto 3n-2$

Son premier terme est u_0

$$u_0=u(0)=3\times 0-2=-2$$
 On remplace n par 0 dans l'expression $u_1=u(1)=3\times 1-2=1$ On remplace n par 1 dans l'expression $u_2=u(2)=3\times 2-2=4$ On remplace n par 2 dans l'expression $u_3=u(3)=3\times 3-2=7$ On remplace n par 3 dans l'expression

Exemple 2 : On définit la suite (u_n) par: $u_n = \frac{1}{n}$ pour les entiers naturels strictement supérieur à 0. Cette suite est définie pour tout $n \ge 1$, u est une application de l'ensemble :

 \mathbb{N}^* vers \mathbb{R}^+

Son premier terme est u_1

$$u_1=u(1)=\frac{1}{1}=1$$
 On remplace n par 1 dans l'expression $u_2=u(2)=\frac{1}{2}$ On remplace n par 2 dans l'expression $u_3=u(3)=\frac{1}{3}$ On remplace n par 3 dans l'expression etc

II) Modes de génération d'une suite numérique

1) Définir une suite par une formule explicite

a) Cas général:

On peut calculer directement chacun des termes d'une suite par la donnée d'une formule explicite de u_n en fonction de n

Exemple 1: On définit la suite
$$(u_n)_{n \in \mathbb{N}}$$
 par : $u_n = (-1)^n$
Alors $u_0 = (-1)^0 = 1$ $u_1 = (-1)^1 = -1$ $u_{1000} = (-1)^{1000} = 1$ $u_{1997} = (-1)^{1997} = -1$

Exemple 2: On définit la suite $(v_n)_{n \in \mathbb{N}}$ par : $v_n = 2n + 5$

Alors
$$v_0 = 2 \times 0 + 5 = 5$$
 $v_1 = 2 \times 1 + 5 = 7$ $v_2 = 2 \times 2 + 5 = 9$ $v_3 = 2 \times 3 + 5 = 11$

b) Cas particulier: Avec une fonction

Une suite définie par une fonction est une suite de la forme : $u_n = f(n)$

Exemple : On définit la suite $(u_n)_{n \in \mathbb{N}}$ par : $u_n = n^2 - 3n + 1$

Il existe une fonction f définie sur $[0; +\infty]$ [tel que $u_n = f(n)$ avec $f(x) = x^2 - 3x + 1$.

On a donc : $u_n = f(n) = n^2 - 3n + 1$ alors

$$u_0 = f(0) = 0^2 - 3 \times 0 + 1 = 1$$
;

$$u_1 = f(1) = 1^2 - 3 \times 1 + 1 = -1;$$

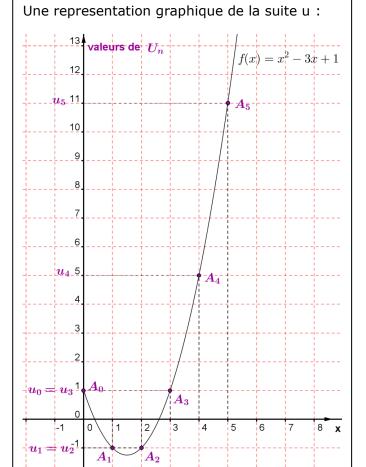
$$u_2 = f(2) = 2^2 - 3 \times 2 + 1 = -1;$$

$$u_3 = f(3) = 3^2 - 3 \times 3 + 1 = 1$$
;

$$u_4 = 4^2 - 3 \times 4 + 1 = 5$$
;

La représentation graphique de la suite u est l'ensemble des points de coordonnées (n ; u_n)

(4;5)



2) Définir une suite par une relation de récurrence

Soit f une fonction définie sur \mathbb{R} . On définit une suite en posant pour tout entier naturel n $u_{n+1} = f(u_n)$

La valeur de u_0 est donnée. On l'appelle « terme initial ».

Remarques : La formule n'est pas explicite, on calcule chaque terme de la suite en fonction du terme précédent

Contrairement à une formule explicite, une relation de récurrence ne permet pas de calculer un terme de rang donné sans avoir calculé tous les termes précédents.

Exemple 1:

Soit la suite (U_n) , définie pour tout $n \ge 1$ par $u_{n+1} = 2u_n + 3$ avec $u_0 = 2$

Pour calculer u_2 il faut connaître u_1 , pour calculer u_3 il faut connaître u_2 et ainsi de suite.

Si on remplace n par 0 dans l'expression alors on a :

$$u_{0+1} = 2u_0 + 3$$
 et donc :

$$u_1 = 2u_0 + 3 = 2 \times 2 + 3 = 7$$

Si on remplace n par 1 dans l'expression alors on a $u_{1+1} = 2u_1 + 3$ et donc :

$$u_2 = 2u_1 + 3 = 2 \times 7 + 3 = 17$$
 et ainsi de suite.

Exemple 2 : Soit la suite (U_n) , définie pour tout $n \ge 1$ par $u_{n+1} = u_n^2 - 3u_n + 1$ avec $u_0 = 1$ Si on remplace n par 0 dans l'expression alors on a :

$$u_{0+1} = u_0^2 - 3u_0 + 1$$
 et donc :

$$u_1 = 1^2 - 3 \times 1 + 1 = -1$$
 $u_1 = -1$

Si on remplace n par 1 dans l'expression alors on a $u_{1+1} = u_1^2 - 3u_1 + 1$ et donc :

$$u_2 = (-1)^2 - 3 \times (-1) + 1 = 5$$
 et ainsi de suite.

$$u_2 = 5$$

3) Générer une suite par un algorithme :

La suite (un) est définie par son premier terme et les instructions d'une boucle qui permettent de calculer les termes suivants.

Exemple:

A ---1

Pour i variant de 1 à N

Fin du Pour

Cet algorithme permet de calculer les différents termes d'une suite :

 u_0 est donné par la valeur de A qui est 1

$$u_1 = 3u_0 + 4 = 3 \times 1 + 4 = 7$$

$$u_2 = 3u_1 + 4 = 3 \times 7 + 4 = 25$$

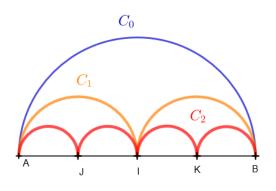
Après N étapes de la boucle la variable A contient le terme un

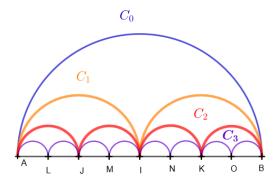
4) Générer une suite par des motifs géométriques

Dans une figure où un motif particulier se répète, on définit une suite (un) comme une quantité géométrique (longueur, angle, aire ...).

Exemple: Les lunules de la figure ci-dessous, construites à l'aide des demi-cercles permettent d'étudier quelques processus itératifs :

Dans la figure ci-dessous AB = 8 cm les points I, J, K sont les milieux respectifs des segments [AB]; [IA]; [IB]. C₀; C₁ et C₂ sont les courbes dessinés en bleu, en orange et rouge:





On peut ainsi continuer en traçant la courbe C_3 à partir des milieux respectifs des segments [AJ] ; [JK] et [KB] :

On peut ainsi continuer en coupant encore en deux les derniers segments tracés

On définit ainsi différentes suites

Par exemple les rayons des demi-cercles :

 $r_0 = 8 \div 2 = 4$

 $r_1 = 4 \div 2 = 2$

 $r_2 = 2 \div 2 = 1$

 $r_3 = 1 \div 2 = 0.5$

Ainsi si nous continuons ainsi la figure nous obtenons la relation :

Pour tout n de \mathbb{N} , $r_{n+1} = r_n \div 2$

On pourrait aussi définir la suite ℓ_n qui représente les longueurs des courbes ou la suite a_n qui représente les aires des courbes...

III) Autres types d'exemples de suites

Exemple 1 fondamental:

Suites où on ajoute toujours un même nombre. On dit qu'une telle suite est arithmétique (voir fiche de cours : suites arithmétiques).

Exemple de suite arithmétique :		
Rang	Algorithme	Termes
0	1	$u_0 = 1$
1	1 + 3	$u_1 = 4$
2	2 + 3	$u_2 = 7$
3	3 + 3	$u_3 = 10$
4	4 + 3	$u_4 = 13$
5	5 + 3	$u_5 = 16$
6	6 + 3	$u_6 = 19$
7	7 + 3	$u_7 = 22$
8	8 + 3	$u_8 = 25$
9	9 + 3	$u_9 = 28$

Exemple 2 fondamental:

suites où on multiplie toujours par un même nombre. On dit qu'une telle suite est géométrique (voir fiche de cours : suites géométriques).

Exemple de suite géométrique :		
Rang	Algorithme	Termes
0	0,1	$u_0=0,1$
1	0,1 × 2	$u_1=0,4$
2	0,4 × 2	$u_2 = 0.8$
3	0,8 × 2	$u_3 = 1,6$
4	1,6 × 2	$u_4 = 3, 2$
5	3,2 × 2	$u_5=6,4$
6	6,4 × 2	$u_6 = 12,8$
7	12,8 × 2	$u_7 = 25, 6$
8	25,6 × 2	$u_8 = 51, 2$
9	51,2× 2	$u_9 = 102, 4$

IV) Représentation graphique des suites

1) Définition

Dans un repère, la représentation graphique de la suite u est l'ensemble des points A_n de coordonnées $(n; u_n)$

2) Exemples

Exemple 1 : Soit la suite (U_n) , définie pour tout $n \ge 1$ par $u_n = 2n - 3$

Représentons cette suite graphiquement :

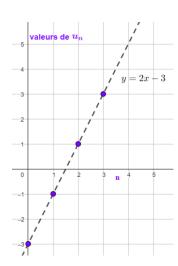
$$u_0 = 2 \times 0 - 3 = -3$$

$$u_1 = 2 \times 1 - 3 = -1$$

$$u_1 = 2 \times 1 - 3 = -1$$
 $u_2 = 2 \times 2 - 3 = 1$ $u_3 = 2 \times 3 - 3 = 3$

$$u_2 = 2 \times 3 - 3 = 3$$

La représentation graphique est l'ensemble des points A_n de coordonnées $(n; u_n)$ La représentation graphique de cette suite est donc le nuage de points de coordonnées (0; -3); (1; -1); (2; -2)et (3; 3)



Les points sont alignés sur la droite d'équation y = 2x - 3

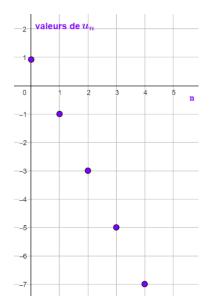
Exemple 2 : Soit la suite (U_n) , définie pour tout $n \ge 1$ par $u_{n+1} = u_n - 2$ avec $u_0 = 1$ Représentons cette suite graphiquement :

$$u_1 = u_0 - 2 = 1 - 2 = -1$$

$$u_3 = u_2 - 2 = -3 - 2 = -5$$

$$u_2 = u_1 - 2 = -1 - 2 = -3$$

$$u_4 = u_3 - 2 = -5 - 2 = -7$$



La représentation graphique de cette suite est donc le nuage de points de coordonnées

$$(0\;;\;1)\;;\;(1\;;\;-1)\;;\;(2\;;\;-3)\;;\;(3\;;\;-5)\;;\;(4\;;\;-7)\;...$$

V) Sens de variation d'une suite numérique.

1) Définitions:

Soit $(u_n)_{n\geq n_0}$, une suite numérique. On dit que cette suite est :

- croissante si pour tout $n \ge n_0$, $u_{n+1} \ge u_n$
- décroissante si pour tout $n \ge n_0$, $u_{n+1} \le u_n$
- constante si pour tout $n \ge n_0$, $u_{n+1} = u_n$

Une suite $(u_n)_{n\geq n_0}$, est monotone si elle est croissante ou décroissante

Remarque : pour connaître le sens de variation d'une suite, on compare donc deux termes consécutifs de la suite. On doit faire cela pour tous les termes de la suite.

2) Méthodes pour étudier le sens de variation d'une suite

Selon l'expression de la suite (u_n) :

- Méthode 1 : On calculera l'expression $u_{n+1} u_n$ et on étudiera son signe :
 - Si, Pour tout entier naturel $n \geq n_0$, $u_{n+1} u_n \geq 0$ alors la suite u est croissante
 - Si, Pour tout entier naturel $n \geq n_0$, $u_{n+1} u_n \leq 0$ alors la suite u est décroissante

En Effet $u_{n+1} - u_n \ge 0$ équivaut à $u_{n+1} \ge u_n$

• Méthode 2 : On peut aussi, sous certaines conditions, calculer l'expression $\frac{u_{n+1}}{u_n}$ et on compare cette expression à 1:

Tout d'abord, il faut prouver que tous les termes de la suite u sont positifs puis, on calcule $\frac{u_{n+1}}{u_n}$:

- Si, Pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} > 1$, alors la suite u est croissante.
- Si, Pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} < 1$, alors la suite u est décroissante.

En Effet, Si tous les termes de la suite u sont positifs, $\frac{u_{n+1}}{u_n} > 1$ équivaut à $u_{n+1} > u_n$

3) Exemples

Exemple 1: On définit la suite $(u_n)_{n \in \mathbb{N}}$ par : $u_n = 3n + 1$ on a donc :

$$u_{n+1} = 3(n+1) + 1 = 3n + 3 + 1 = 3n + 4$$

Pour tout n de \mathbb{N} : $u_{n+1}-u_n=3n+4-(3n+1)=3n+4-3n-1=3$. 3 est positif donc

 $u_{n+1} - u_n > 0$ donc

Pour tout n de \mathbb{N} : $u_{n+1} > u_n$

La suite (u_n) est donc strictement croissante.

Exemple 2: On définit la suite $(u_n)_{n \in \mathbb{N}}$ par : $u_{n+1} = 4 \times u_n$ et $u_0 = 2$

Pour tout
$$n$$
 de \mathbb{N} : $\frac{u_{n+1}}{u_n} = \frac{4 \times u_n}{u_n} = 4$

Pour tout
$$n$$
 de \mathbb{N} : $\frac{u_{n+1}}{u_n} > 1$,

Comme tous les u_n sont positifs car u_0 = 2 et on multiplie par 2 chaque terme pour avoir le suivant

on a : pour tout n de \mathbb{N} , $u_{n+1} > u_n$ et la suite (u_n) est donc croissante.

Exemple 3: On définit la suite $(u_n)_{n \in \mathbb{N} \setminus \{0\}}$ par : $u_n = \frac{1}{n}$

$$u_{n+1} = \frac{1}{n+1}$$

Pour tout
$$n$$
 de \mathbb{N} : $u_{n+1} - u_n = \frac{1}{n+1} - \frac{1}{n} = \frac{n}{n(n+1)} - \frac{n+1}{n(n+1)} = \frac{n-n-1}{n(n+1)} = \frac{-1}{n(n+1)} < 0$

Donc Pour tout n de \mathbb{N} : $u_{n+1} - u_n < 0$

Pour tout n de \mathbb{N} : $u_{n+1} < u_n$

La suite (u_n) est donc strictement décroissante.

VI) Quelques programmes sur Python sur les suites

1) Suite définie par une relation de récurrence :

Soit la suit $U_{n+1} = 0.5 u_n+2$ avec $u_0=0$ Le programme qui permet de calculer u_{50} est :

$$u=0$$

for i in range(1,51): 1 est inclus et 51 est exclus, la dernière valeur de i est 50

$$u=0,5*u+2$$
 print(u)

....(..)

Ce programme par exemple permet de calculer u₅₀

2) Calcul d'un rang à partir de laquelle notre suite est plus grande qu'un nombre donné

Soit une suite telle que $u_0 = 15$ et pour tout entier naturel n par la relation $u_{n+1} = 5u_n + 2$ Nous allons faire un programme pour déterminer le plus petit entier naturel p tel que $U_p > 10\,000$

```
def min():
    A=15
    N=0
    while A<=10000:
        N=N+1
        A=5*A+2
    return(N)

Le plus petit entier p est 5</pre>
```

Le programme retourne la valeur 5, ce qui veut dire qu'à partir de $n=5~u_n > 10~000$.