Dérivées des fonctions usuelles. Opérations

I) Définition

Une fonction f est dérivable sur un intervalle (ou une réunion d'intervalles) D si, et seulement si elle est dérivable pour tout réel $a \in D$

Si f est dérivable sur D, on appelle fonction dérivée de f sur D la fonction notée f' définie sur D par : $a \rightarrow f'(a)$

II) Dérivées des fonctions usuelles

1) Fonction constante $f(x) = k \ (k \in \mathbb{R})$

La fonction constante $f(x)=k\,(\,k\in\mathbb{R})$ est dérivable sur \mathbb{R} et sa fonction dérivée est f'(x)=0

Démonstration:

Calculons le taux de variation de la fonction f en un point a (réel quelconque).

On a pour tout réel $h \neq 0$ $\frac{f(a+h)-f(a)}{h} = \frac{k-k}{h} = 0$ Donc pour tout réel a et pour tout réel $h \neq 0$ on a f'(a) = 0

Donc pour tout réel a et pour tout réel $h \neq 0$ on a f'(a) = 0 d'où le résultat f'(x) = 0 pour tout x réel

Exemple:

Soit f la fonction définie sur \mathbb{R} par f(x) = 3.5. f est dérivable sur \mathbb{R} et sa fonction dérivée est : f'(x) = 0

2) Fonction $f(x) = x^n \ (n \in \mathbb{N})$

a) Fonction f(x) = x

La fonction f(x) = x est dérivable sur \mathbb{R} et sa fonction dérivée est f'(x) = 1

Démonstration:

Calculons le taux de variation de la fonction f en un point a (réel quelconque).

On a pour tout réel $h \neq 0$ $\frac{f(a+h)-f(a)}{h} = \frac{a+h-a}{h} = \frac{h}{h} = 1$ puisque $h \neq 0$

Donc pour tout réel a on a f'(a) = 1 d'où le résultat f'(x) = 1 pour tout x réel

b) Fonction $f(x) = x^2$

La fonction $f(x) = x^2$ est dérivable sur \mathbb{R} et sa fonction dérivée est f'(x) = 2x

Démonstration:

Calculons le taux de variation de la fonction f en un point a (réel quelconque).

On a pour tout réel
$$h \neq 0$$

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h} = \frac{2ah+h^2}{h} = \frac{h(2a+h)}{h}$$

Donc pour tout réel
$$h \neq 0$$
 $\frac{f(a+h)-f(a)}{h} = 2a + h$

Pour tout réel a lorsque h tend vers 0, ce taux de variation tend vers 2a

Donc on a f'(a) = 2a d'où le résultat f'(x) = 2x pour tout x réel

c) Cas général : Fonction $f(x) = x^n (n \in N)$

La fonction $f(x) = x^n (n \in N)$ est dérivable sur \mathbb{R} et sa fonction dérivée est $f'(x) = nx^{n-1}$

Résultat admis en première

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^7$. f est dérivable sur \mathbb{R} et sa fonction dérivée est : $f'(x) = 7 x^6$

3) fonction affine

m, p étant deux nombres réels, la fonction affine f(x) = mx + p est dérivable sur \mathbb{R} et sa fonction dérivée est f'(x) = m

Démonstration : Calculons le taux de variation de la fonction f(x) = mx + p

On a pour tout réel
$$h \neq 0$$

$$\frac{f(a+h)-f(a)}{h} = \frac{m(a+h)+p-(ma+p)}{h} = \frac{ma+mh+p-ma-p}{h} = \frac{mh}{h} = m$$

Donc $\frac{f(a+h)-f(a)}{h}=m$ et lorsque h tend vers 0, ce taux de variation tend vers m

Donc on a f'(a) = m d'où le résultat f'(x) = m pour tout x réel (La dérivée est une fonction constante)

4) Fonction $f(x) = \frac{1}{x}$

La fonction $f(x) = \frac{1}{x}$ est dérivable sur les intervalles] - ∞ ; 0 [et] 0 ; + ∞ [et sa fonction dérivée est $f'(x) = -\frac{1}{x^2}$

Démonstration : Calculons le taux de variation de la fonction f en un point a ($a \neq 0$).

On a pour tout réel $h \neq 0$ tel que a et a + h soient de même signe :

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-(a+h)}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = \frac{-h}{ah(a+h)}$$
Donc
$$\frac{f(a+h)-f(a)}{h} = \frac{-1}{a(a+h)}$$
 puisque $h \neq 0$

Pour tout réel $a \ne 0$ lorsque h tend vers 0, ce taux de variation tend vers $\frac{-1}{a^2}$ Donc on a $f'(a) = -\frac{1}{a^2}$ d'où le résultat $f'(x) = -\frac{1}{x^2}$ pour tout x réel non nul.

5) Fonction $f(x) = \sqrt{x}$

La fonction $f(x)=\sqrt{x}$ est dérivable sur l'intervalle] $\mathbf{0}$; $+\infty$ [et sa fonction dérivée est $f'(x)=\frac{1}{2\sqrt{x}}$

Démonstration:

Calculons le taux de variation de la fonction f en un point a ($a \neq 0$).

On a pour tout réel h > 0 tel que a et a + h soient strictement positifs

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h} \times \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}} = \frac{(\sqrt{a+h}-\sqrt{a})(\sqrt{a+h}+\sqrt{a})}{h(\sqrt{a+h}+\sqrt{a})} = \frac{(a+h)-a}{h(\sqrt{a+h}+\sqrt{a})} = \frac{\mathcal{K}}{\mathcal{K}(\sqrt{a+h}+\sqrt{a})}$$

Donc
$$\frac{f(a+h)-f(a)}{h} = \frac{1}{\sqrt{a+h} + \sqrt{a}}$$
 puisque $h \neq 0$

Pour tout réel $a \neq 0$ lorsque h tend vers 0, ce taux de variation tend vers $\frac{1}{\sqrt{a}+\sqrt{a}}$ Donc on a $f'(a) = \frac{1}{2\sqrt{a}}$ d'où le résultat $f'(x) = \frac{1}{2\sqrt{x}}$ pour tout x > 0.

Remarques:

- ullet La fonction $f(x)=\sqrt{x}\,$ n'est pas dérivable pour a=0 (voir fiche Nombre dérivé et tangente)
- La fonction f(x) = |x| est dérivable sur les intervalles] ∞ ; 0 [et] 0 ; + ∞ [

Démonstration:

- 1°) Lorsque $x \in]0$; $+\infty [f(x) = x \text{ donc } f \text{ est dérivable (voir plus haut) et } f'(x) = 1$
- 2°) Lorsque $x \in]-\infty$; 0 [f(x) = -x

Calculons le taux de variation de la fonction f en un point a (a < 0).

On a pour tout réel $h \neq 0$ tel que a + h soit négatif

$$\frac{f(a+h)-f(a)}{h} = \frac{-(a+h)-(-a)}{h} = \frac{-h}{h} = -1 \text{ puisque } h \neq 0$$

Donc pour a < 0 f'(a) = -1 et f'(x) = -1 sur $]-\infty$; 0 [

Remarque : le taux de variation prenant deux valeurs différentes sur] $0 ; + \infty[$ et sur] $-\infty ; 0 [$ la fonction f(x) = |x| n'est pas dérivable en zéro.

6) Fonction $f(x) = \frac{1}{x^n}$

La fonction $f(x)=\frac{1}{x^n}$ est dérivable sur les intervalles] - ∞ ; 0 [et]0 ; + ∞ [et sa fonction dérivée est $f'(x)=-\frac{n}{x^{n+1}}$

Résultat admis en première

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^7}$.

f est dérivable sur] - ∞ ; 0 [\cup] 0 ; + ∞ [et sa fonction dérivée est : $f'(x) = \frac{-7}{x^8}$

III) Tableau récapitulatif

Fonction f :	Dérivable sur :	Fonction dérivée f' :
$f(x) = k (k \in \mathbb{R})$	R	f'(x) = 0
f(x) = x	R	f'(x) = 1
$f(x) = x^2$	R	f'(x) = 2x
f(x) = mx + p	$\mathbb R$	f'(x) = m
$f(x) = x^n (n \in N^n)$	$\mathbb R$	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x}$] - ∞ ; 0 [∪] 0 ; + ∞ [$f'(x) = -\frac{1}{x^2}$
$f(x) = \frac{1}{x^n} \ (n \in N)$]-∞;0[∪]0;+∞[$f'(x) = -\frac{n}{x^{n+1}}$
$f(x) = \sqrt{x}$]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$

IV) Dérivées et opérations

Dans toute la suite u et v sont deux fonctions dérivables sur l'ensemble D (D étant un intervalle ou une réunion d'intervalles) et λ est un nombre réel.

1) Somme de deux fonctions

La fonction u + v définie par (u + v)(x) = u(x) + v(x) est dérivable sur D et sa dérivée est définie par (u + v)'(x) = u'(x) + v'(x).

Exemples

Calculer les dérivées des fonctions suivantes :

1°)
$$f(x) = x + x^4 \text{ sur } \mathbb{R}$$

La dérivée de x est 1

La dérivée de x^4 est $4x^3$

On obtient
$$f'(x) = 1 + 4x^3$$

2°)
$$f(x) = \frac{1}{x} - x^2 - 3$$
 pour x réel, $x \neq 0$

La dérivée de $\frac{1}{x}$ est $-\frac{1}{x^2}$,

La dérivé de $-x^2$ est -2x et La dérivée de -3 est 0

On obtient
$$f'(x) = -\frac{1}{x^2} - 2x$$

Démonstration:

Calculons le taux de variation de la fonction u+v pour $a\in D$ Pour tout $h\neq 0$ tel que $a+h\in D$

$$\frac{(u+v)(a+h)-(u+v)(a)}{h} = \frac{u(a+h)+v(a+h)-u(a)-v(a)}{h} = \frac{u(a+h)-u(a)}{h} + \frac{v(a+h)-v(a)}{h}$$

Les fonctions u et v étant dérivables en a, lorsque h tend vers 0 le premier quotient tend vers u'(a) et le deuxième quotient vers v'(a)

Le taux de variation de la fonction u + v tend vers u'(a) + v'(a)Pour tout $a \in D$ la fonction dérivée de la fonction u + v est bien u' + v'

2) Produit d'une fonction par un réel

La fonction λu définie par $(\lambda u)(x) = \lambda u(x)$ est dérivable sur D et sa dérivée est définie par $(\lambda u)'(x) = \lambda u'(x)$.

Exemples

Calculer les dérivées des fonctions suivantes :

1°)
$$f(x) = 7x^3$$
 sur \mathbb{R}

La dérivée de x^3 est $3x^2$

On obtient $f'(x) = 7 \times 3x^2 = 21x^2$

2°)
$$f(x) = \frac{4}{x}$$
 pour *x* réel, $x \neq 0$

La dérivée de $\frac{1}{x}$ est $-\frac{1}{x^2}$

On obtient $f'(x) = -\frac{4}{x^2}$

3°)
$$f(x) = 5x^2 - 3\sqrt{x}$$
 sur] 0; + ∞ [

La dérivée de x^2 est 2x

La dérivée de \sqrt{x} est $\frac{1}{2\sqrt{x}}$

On obtient $f'(x) = 5 \times 2x - 3\frac{1}{2\sqrt{x}}$

$$f'(x) = 10x - \frac{3}{2\sqrt{x}}$$

Démonstration:

Calculons le taux de variation de la fonction λu pour $\alpha \in D$ Pour tout $h \neq 0$ tel que $a + h \in D$

$$\frac{(\lambda u)(a+h)-(\lambda u)(a)}{h} = \frac{\lambda u(a+h)-\lambda u(a)}{h} = \lambda \frac{u(a+h)-u(a)}{h}$$

Or la fonction u étant dérivable en a, lorsque h tend vers 0 le quotient tend vers u'(a).

Le taux de variation de la fonction λu tend vers $\lambda u'(a)$ Pour tout $a \in D$ la fonction dérivée de la fonction λu est bien $\lambda u'$.

3) Fonction polynôme

a) Définition

Une fonction f définie sur $\mathbb R$ est une fonction polynôme si f(x) peut s'écrire comme une somme de termes de la forme kx^n avec $k \in \mathbb R$ et $n \in \mathbb N$.

b) Dérivée

Une fonction polynôme est dérivable sur R

Ceci est une conséquence des résultats du I) et du II)

Exemples:

Calculer les dérivées des fonctions polynômes suivantes sur \mathbb{R} :

1°)
$$f(x) = x^2 + 3x - 5$$

On obtient $f'(x) = 2x + 3$

2°)
$$f(x) = \frac{3}{2}x^3 - 5x^2 + \frac{1}{2}x - 5$$

On obtient $f'(x) = \frac{9}{2}x^2 - 10x + \frac{1}{2}$

4) Produit de deux fonctions

La fonction uv définie par $(uv)(x) = u(x) \times v(x)$ est dérivable sur D et sa dérivée est définie par (uv)'(x) = u'(x)v(x) + u(x)v'(x)

Exemples : Calculer les dérivées des fonctions suivantes :

1°)
$$f(x) = x^2 \sqrt{x}$$
 sur] 0; $+ \infty$ [
En posant $u(x) = x^2$ et $v(x) = \sqrt{x}$ on a $u'(x) = 2x$ et $v'(x) = \frac{1}{2\sqrt{x}}$ On obtient $f'(x) = 2x \sqrt{x} + x^2 \frac{1}{2\sqrt{x}} = \frac{2x\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x^2}{2\sqrt{x}} = \frac{2\times 2\times x \times \sqrt{x} \times \sqrt{x}}{2\sqrt{x}} + \frac{x^2}{2\sqrt{x}} = \frac{4x^2 + x^2}{2\sqrt{x}} = \frac{5x^2}{2\sqrt{x}}$

2°)
$$f(x) = (x^3 + 3x + 1)(2x^2 + 5x - 1)$$
 sur \mathbb{R}
En posant $u(x) = x^3 + 3x + 1$ et $v(x) = 2x^2 + 5x - 1$ on a $u'(x) = 3x^2 + 3$ et $v'(x) = 4x + 5$
On obtient $f'(x) = (3x^2 + 3)(2x^2 + 5x - 1) + (x^3 + 3x + 1)(4x + 5)$
 $f'(x) = 6x^4 + 15x^3 - 3x^2 + 6x^2 + 15x - 3 + 4x^4 + 12x^2 + 4x + 5x^3 + 15x + 5$
 $f'(x) = 10x^4 + 20x^3 + 15x^2 + 34x + 2$

La fonction dérivée peut-être écrite sous sa forme développée ou factorisée selon le contexte.

Démonstration:

Calculons le taux de variation de la fonction uv pour $a \in D$ Pour tout $h \neq 0$ tel que $a + h \in D$

$$\frac{(uv)(a+h)-(uv)(a)}{h} = \frac{u(a+h)v(a+h)-u(a)v(a)}{h}$$

En soustrayant et ajoutant u(a)v(a+h) au numérateur ce taux de variation s'écrit :

$$\frac{u(a+h)v(a+h)-u(a)v(a+h)+u(a)v(a+h)-u(a)v(a)}{h}$$

Ou encore:

$$\frac{v(a+h)(u(a+h)-u(a))}{h} + \frac{u(a)(v(a+h)-v(a))}{h} = \frac{u(a+h)-u(a)}{h} \ v(a+h) + u(a) \ \frac{v(a+h)-v(a)}{h}$$

Les fonctions u et v étant dérivables en a, lorsque h tend vers 0,

$$\frac{u(a+h)-u(a)}{h}$$
 tend vers $u'(a)$ et $\frac{v(a+h)-v(a)}{h}$ vers $v'(a)$

En admettant que lorsque h tend vers 0, v(a+h) tend vers v(a)

$$\frac{u(a+h)-u(a)}{h} v(a+h) + u(a) \frac{v(a+h)-v(a)}{h}$$
 tend vers $u'(a) v(a) + u(a) v'(a)$

Donc le taux de variation de la fonction uv tend vers u'(a)v(a) + u(a)v'(a)

Pour tout $a \in D$ la fonction dérivée de la fonction uv est bien u'v + uv'

5) Inverse d'une fonction

La fonction $\frac{1}{v}$ définie par $(\frac{1}{v})(x) = \frac{1}{v(x)}$ est dérivable sur l'ensemble D privé des réels où v(x) = 0 (D \cap { $x \mid v(x) \neq 0$ }) et sa dérivée est définie par: $\left(\frac{1}{v}\right)'(x) = -\frac{v'(x)}{(v(x))^2}$

$$\left(\frac{1}{v}\right)'(x) = -\frac{v'(x)}{(v(x))^2}$$

Exemples

Calculer les dérivées des fonctions suivantes :

1°)
$$f(x) = \frac{1}{x^2 + 7}$$
 sur \mathbb{R}

2°)
$$f(x) = \frac{-4}{\sqrt{x}}$$
 sur] 0; +\infty [

En posant $u(x) = x^2 + 7$ on a u'(x) = 2x

On obtient
$$f'(x) = \frac{-2x}{(x^2+7)^2}$$

En posant
$$u(x) = \sqrt{x}$$
 on a $u'(x) = \frac{1}{2\sqrt{x}}$
On obtient $f'(x) = -4 \times \frac{-\frac{1}{2\sqrt{x}}}{(\sqrt{x})^2} = \frac{\frac{4}{2}}{(\sqrt{x})^2\sqrt{x}} = \frac{2}{x\sqrt{x}}$

6) Quotient de deux fonctions

La fonction $\frac{u}{v}$ définie par $\left(\frac{u}{v}\right)(x) = \frac{u(x)}{v(x)}$ est dérivable sur l'ensemble D privé des réels où v(x) = 0 (D $\cap \{x \mid v(x) \neq 0\}$) et sa dérivée est définie par :

$$\left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

Exemples

Calculer les dérivées des fonctions suivantes :

1°)
$$f(x) = \frac{3x+1}{5x-3}$$
 sur] $-\infty$; $\frac{3}{5}$ [\cup] $\frac{3}{5}$; $+\infty$ [

En posant u(x) = 3x + 1 et v(x) = 5x - 3 on a u'(x) = 3 et v'(x) = 5

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

On obtient
$$f'(x) = \frac{3(5x-3)-5(3x+1)}{(5x-3)^2} = \frac{-14}{(5x-3)^2}$$

2°)
$$f(x) = \frac{2x^2 - 3x + 1}{3x + 1}$$
 sur] $-\infty$; $-\frac{1}{3}$ [\cup] $-\frac{1}{3}$; $+\infty$ [

En posant $u(x) = 2x^2 - 3x + 1$ et v(x) = 3x + 1 on a u'(x) = 4x - 3 et v'(x) = 3

$$f'(x) = \frac{u'(x) \times v(x) - v'(x) \times u(x)}{v^2(x)}$$

On obtient
$$f'(x) = \frac{(4x-3)(3x+1)-3(2x^2-3x+1)}{(3x+1)^2} = \frac{12x^2+4x-9x-3-6x^2+9x-3}{(3x+1)^2}$$

$$f'(x) = \frac{6x^2 + 4x - 6}{(3x+1)^2}$$

Démonstration:

Le résultat s'obtient à l'aide des résultats du 5) et 6) en écrivant : $\frac{u}{v} = u \times \frac{1}{v}$ En effet avec cette écriture :

$$\left(\frac{u}{v}\right)' = u' \times \frac{1}{v} + u \times \left(\frac{1}{v}\right)' = u' \times \frac{1}{v} + u \times \left(-\frac{v'}{v^2}\right) = u' \times \frac{v}{v^2} - \frac{uv'}{v^2} = \frac{u'v - uv'}{v^2}$$

D'où le résultat annoncé.

7) Composition de fonctions et dérivation

a) composition de fonction

Soit f une fonction définie sur un intervalle $\mathbf J$ et g une fonction définie sur un intervalle $\mathbf I$ tel que pour tout réel x de $\mathbf I$, g(x) appartient à $\mathbf J$.

La fonction composée de g suivie de f est la fonction h définie sur I par h(x) = f(g(x))

$$\begin{array}{ccc}
g & f \\
x \mapsto g(x) = X \mapsto f(X) \\
x & & f(g(x))
\end{array}$$

Exemple:

Soit f la fonction définie sur $J = [0; +\infty[$ par $f(x) = \sqrt{x}$ et g la fonction définie sur $J = [-2; +\infty[$ par g(x) = 3x + 6

- La fonction h composée de f suivie de g est la fonction $h(x) = f(g(x)) = f(3x+6) = \sqrt{3x+6}$ La fonction $x \mapsto \sqrt{x}$ est définie sur $[0 ; +\infty[$ et par conséquent $x \mapsto \sqrt{3x+6}$ est définie lorsque $3x+6 \ge 0$ c'est-à-dire sur $[-2 ; +\infty[$
- La fonction i composée de g suivie de f est la fonction $i(x) = g(f(x)) = g(\sqrt{x}) = 3\sqrt{x} + 6$ La fonction $x \mapsto \sqrt{x}$ est définie sur $[0 ; +\infty[$ et par conséquent $x \mapsto 3\sqrt{x} + 6$ est définie sur $[0 ; +\infty[$

b. Dérivée de la composée avec une fonction affine

Soit f une fonction définie et dérivable sur un intervalle J et g une fonction affine définie sur un intervalle I par g(x) = ax + b avec a, b deux réels tel que J est l'intervalle formé par les valeurs prises de ax + b lorsque x décrit l'intervalle I.

Alors la fonction h composée de g suivie de f est dérivable sur I, alors la fonction f définie sur I par

 $h: x \mapsto f(ax + b)$ est dérivable sur I et on a pour tout réel x de I on a : h'(x) = af'(ax + b)

Exemple: Reprenons l'exemple précédent:

Soit f la fonction définie sur $J=[0;+\infty[$ par $f(x)=\sqrt{x}$ et g la fonction définie sur $J=[-2;+\infty[$ par g(x)=3x+6. La fonction h composée de f suivie de g est la fonction $h(x)=(f(g(x))=f(3x+6)=\sqrt{3x+6}$. La fonction $x\mapsto \sqrt{x}$ est dérivable sur $[0;+\infty[$,par conséquent 3x+6>0 pour x>-2, f est donc dérivable sur $[-2;+\infty[$ et sa dérivée est :

$$h'(x) = 3f'(3x+6) = \frac{3}{2\sqrt{3x+6}}$$

8) Tableau récapitulatif

Si u et v sont deux fonctions dérivables sur l'ensemble D (D étant un intervalle ou une réunion d'intervalles) et λ est un nombre réel on a :

Fonction	Dérivable sur	Dérivée
u + v	D	u' + v'
λυ	D	λu'
$(ax+b)^n$	D	$na(ax+b)^{n-1}$
$\frac{1}{u}$	$\{x / u(x) \neq 0\}$	$-rac{u'}{u^2}$
$\frac{1}{(ax+b)^n}$	$\{x / u(x) \neq 0\}$	$-\frac{na}{(ax+b)^{n+1}}$
uv	D	u'v + uv'
$\frac{u}{v}$	$\{x / v(x) \neq 0\}$	$\frac{u'v-uv'}{v^2}$
$\sqrt{ax+b}$	$\{x / ax + b > 0\}$	$\frac{a}{2\sqrt{ax+b}}$

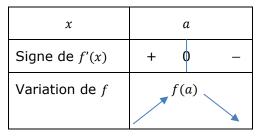
V) Sens de variation d'une fonction et extremum local

1) Signe de f' et variation de f

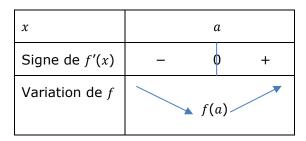
- f est croissante sur I si et seulement si pour tout réel x de I, $f'(x) \ge 0$
- f est décroissante sur I si et seulement si pour tout réel x de I, $f'(x) \le 0$
- f est constante sur I si et seulement si pour tout réel x de I, f'(x) = 0

2) Extremum locaux

Si le fonction dérivée f' s'annule en a en changeant de signe de part et d'autre de a, alors f admet un extremum local en a:



f(a) est un maximum local



f(a) est un minimum local

Exemple : Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4$

Sa dérivée est f(x) = 2x et f'(x) = 0 si et seulement si 2x = 0 si et seulement si x = 0De plus $2x \ge 0$ si et seulement si $x \ge 0$ et $2x \le 0$ si et seulement si $x \le 0$ En résumé f'(0) = 0 et si $x \ge 0$ $f'(x) \ge 0$ et si $x \le 0$ $f'(x) \le 0$ et $f(0) = 0^2 - 4 = -4$ -4 est bien un extremum local, c'est un minimum

x	0
f'(x)	- 0 +
f(x)	-4

Autre exemple : Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 1$

 $f'(x) = 3x^2$ f'(x) = 0 si et seulement si $3x^2 = 0$ si et seulement si x = 0 mais f'(x) ne change pas de signe (un carré étant toujours positif donc sans ce cas f(0) n'est pas un extremum.

x	0
<i>f</i> ′(<i>x</i>)	+ 0 +
f(x)	-1

3) Etude de variations d'une fonction

Pour étudier les variations d'une fonction :

- 1. Calcul de la fonction dérivée f' de f
- 2. Etude du signe de la dérivée f' sur I
- 3. Construction du tableau de variations

x	Intervalle de définition de f : I				
Signe de $f'(x)$	Signes				
Variations de f	Variations et extremum locaux				

Exemple: Etudier les variations de la fonction définie sur \mathbb{R} par $f(x) = \frac{x+5}{x^2+11}$

1. Calcul de la fonction dérivée de f :

$$u(x) = x + 5 \qquad \qquad u'(x) = 1$$

$$v(x) = x^2 + 11$$
 $v'(x) = 2x$ $f'(x) = \frac{u'(x)}{2}$

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

On obtient
$$f'(x) = \frac{1(x^2+11)-2x(x+5)}{(x^2+11)^2} = \frac{x^2+11-2x^2-10x}{(x^2+11)^2}$$
 $f'(x) = \frac{-x^2-10x+11}{(x^2+11)^2}$

$$f'(x) = \frac{-x^2 - 10x + 11}{(x^2 + 11)^2}$$

2. Etude du signe de f'(x) .Le dénominateur est toujours positif, le signe de f' dépend de celui de $-x^2-10x+11$. $\Delta=(-10)^2-4\times(-1)\times11=144>0$ $-x^2-10x+11$ a deux racines $:x_1=\frac{10-\sqrt{144}}{-2}$ et $x_2=\frac{10+\sqrt{144}}{-2}$

$$-x^2 - 10x + 11$$
 a deux racines : $x_1 = \frac{10 - \sqrt{144}}{-2}$ et $x_2 = \frac{10 + \sqrt{144}}{-2}$

$$x_1 = \frac{10-12}{-2}$$
 et $x_2 = \frac{10+12}{-2}$

$$x_1 = 1$$
 et $x_2 = -11$

On obtient le tableau de signe :

x	-∞		-11		1	+	∞
$-x^2 - 10x + 11$		-	o	+	ø	-	
$x^2 + 11$		+		+		+	
f'(x)		-	ø	+	0	-	

3. On obtient le tableau de variation :

x	-∞	-11	1	+∞
<i>f</i> '(<i>x</i>)	ı	0 +	- ф	-
f(x)		$-\frac{1}{22}$	$\frac{1}{2}$	

$$f(-11) = \frac{-11+5}{(-11)^2+11} = \frac{-11+5}{(-11)^2+11} = \frac{-6}{132} = \frac{-1}{22}$$
$$f(1) = \frac{1+5}{1^2+11} = \frac{1+5}{1^2+11} = \frac{6}{12} = \frac{1}{2}$$

$$\frac{-1}{2^2}$$
 est un minimum local de f et $\frac{1}{2}$ est un maximum local de f