Fonction logarithme décimal

I) Fonction exponentielle de base 10

1) Définition et propriété

- La fonction exponentielle de base 10 est définie sur \mathbb{R} par $f(x) = 10^x$.
- Cette fonction est strictement positive sur \mathbb{R} .
- ullet Cette fonction est strictement croissante sur ${\mathbb R}$
- Pout tous nombres réels a, b :

$$10^a \times 10^b = 10^{a+b}$$

$$\frac{10^a}{10^b} = 10^{a-b}$$

• Cas particulier:

$$10^0 = 1$$

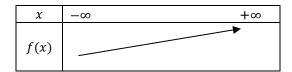
$$10^1 = 10$$

Exemple:

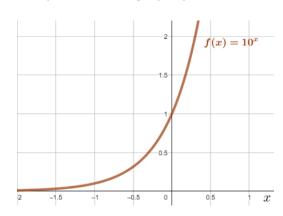
$$\frac{10^5 \times 10^7}{(10^3)^2} = \frac{10^{5+7}}{10^{3 \times 2}} = \frac{10^{12}}{10^6} = 10^{12-6} = 10^6$$

2) Tableau de variation et courbe représentative

La tableau de variation est :



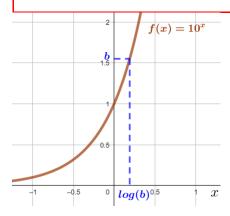
La représentation graphique est :



II) Définition et étude du logarithme décimal

1) Définition 1

L'équation $10^x = b$, avec b > 0, admet une unique solution dans \mathbb{R} . Cette solution se note $\log(b)$.



2) Définition 2

On appelle logarithme décimal d'un réel strictement positif b, l'unique solution de l'équation $10^x = b$. On la note $\log(b)$.

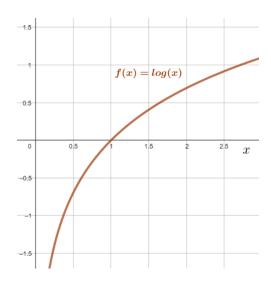
La fonction logarithme décimal, notée log, est la fonction :

$$x \mapsto \log(x)$$

3) Sens de variation

La fonction logarithme décimal $x \mapsto \log(x)$ est croissante sur]0; $+\infty[$.

4) Représentation graphique de la fonction $x \mapsto \log(x)$



5) Valeurs particulières du logarithme décimal

$$log(1) = 0$$

 $log 10 = 1 et$
 $log(\frac{1}{10}) = -1$

Explications:

$$10^{0} = 1 \text{ donc } 0 = \log(1)$$

 $10^{1} = 10 \text{ donc } 1 = \log(10)$
 $10^{-1} = \frac{1}{10} \text{ donc } -1 = \log(\frac{1}{10})$

6) Propriétés

- **Si** $x \ge 1$, $\log(x) \ge 0$
- **Si** $0 < x \le 1$, $\log(x) \le 0$
- Pour b > 0: $10^x = b$ revient à écrire $x = \log(b)$
- $\bullet \log(10^x) = x$
- Pour x > 0: $10^{\log(x)} = x$

Exemples:

- **1.** $\log(1.5) \ge 0$ car $1.5 \ge 1$
- **2.** $\log(0.9) \le 0$ car $0 < 0.9 \le 1$
- **3.** $10^7 = 10\,000\,000$ si et seulement si $7 = \log(10\,000\,000)$
- **4.** $\log(10^8) = 8$
- **5.** $\log(10\ 000) = \log(10^4) = 4$
- **6.** $\log(0.001) = \log(10^{-3}) = -3$
- **7.** $10^{\log(9)} = 9$

III) Propriétés algébriques du logarithme décimal

Pour a > 0 et b > 0:

- $\bullet \log(a \times b) = \log(a) + \log(b)$
- $\log\left(\frac{a}{b}\right) = \log(a) \log(b)$
- $\log\left(\frac{1}{b}\right) = -\log(b)$
- Pour n entier naturel : $\log(a^n) = n \log(a)$

Exemples:

Exemple 1: Simplifier les expressions suivantes :

$$A = \log(3 - \sqrt{5}) + \log(3 + \sqrt{5})$$

$$B = 3\log(2) + \log(5) - 5\log(2)$$

$$C = \log(10^5) + \log\left(\frac{1}{10}\right)$$

Réponse :

$$A = \log(3 - \sqrt{5}) + \log(3 + \sqrt{5}) \qquad \text{Or } \log(a) + \log(b) = \log(a \times b) \qquad \text{donc}$$

$$A = \log((3 - \sqrt{5})(3 + \sqrt{5}))$$
 On reconnait l'identité remarquable $(a + b)(a - b) = a^2 - b^2$ donc

$$A = \log(3^2 - \sqrt{5}^2) = \log(9 - 5) = \log(4)$$

$$A = \log(4)$$

$$B = 3\log(2) + \log(5) - 5\log(2)$$
 Or $n\log(a) = \log(a^n)$ donc

$$B = \log(2^3) + \log(5) - \log(2^5)$$

$$B = \log(8) + \log(5) - \log(32) \qquad \text{Or } \log(a) + \log(b) = \log(a \times b) \qquad \text{donc}$$

$$B = \log(8 \times 5) - \log(32) \qquad \text{Or } \log(a) - \log(b) = \log(\frac{a}{b}) \qquad \text{done}$$

$$B = \log\left(\frac{40}{32}\right) = \log\left(\frac{5}{4}\right)$$

$$B = \log\left(\frac{5}{4}\right)$$

$$C = \log(10^5) + \log\left(\frac{1}{10}\right)$$
 Or $\log(10^n) = n \text{ donc } \log(10^5) = 5$

$$C = 5 + \log\left(\frac{1}{10}\right)$$
 Or $\log\left(\frac{1}{b}\right) = -\log(b)$ donc

$$C = 5 - \log(10)$$
 Or $log(10^n) = n \text{ donc } log(10) = log(10^1) = 1$

$$C = 5 - 10 = -5$$

Exemple 2:

On donne : $\log(a) = 5$.

Calculer $\log(a^2)$, $\log(a^4)$ et $\log(100a)$.

Réponse :

•
$$\log(a^2) = 2\log(a)$$
 avec $\log(a) = 5$ donc $\log(a^2) = 2 \times 5 = 10$

•
$$\log(a^4) = 4\log(a)$$
 avec $\log(a) = 5$ donc $\log(a^4) = 4 \times 5 = 20$

•
$$\log(100a)$$
 Or $\log(a \times b) = \log(a) + \log(b)$ et $\log(a) = 5$ donc $\log(100a) = \log(100) + \log(a) = \log(10^2) + \log(a) = 2 + 5 = 7$ donc $\log(100a) = 7$

IV) Résolution d'équations à l'aide du logarithme décimal

Pour a > 0 et b > 0:

log(a) = log(b) si et seulement si à a = b

Exemples:

Exemple 1 : Résoudre dans \mathbb{R} l'équation : $5^x = 3$

Réponse : $5^x = 3$ si et seulement si $\log(5^x) = \log(3)$ (on utilise la propriété a = b si et seulement si : $\log a = \log b$) Or $\log(a^n) = n \log(a)$ donc

$$x\log(5) = \log(3) \text{ donc } x = \frac{\log(3)}{\log(5)} \text{ donc } S = \{\frac{\log(3)}{\log(5)}\}$$

Exemple 2 : Résoudre dans]0; $+\infty[$ l'équation : $x^7 = 3$

Réponse : $x^7 = 3$ si et seulement si $\log(x^7) = \log(3)$ (on utilise la propriété a = b si et seulement si : $\log a = \log b$) Or $\log(a^n) = n \log(a)$ donc

$$7\log(x) = \log(3)$$
 donc $\log(x) = \frac{\log(3)}{7}$ Or $n\log(a) = \log(a^n)$ donc

$$\log(x) = \log(3^{\frac{1}{7}})$$
 si et seulement si $x = 3^{\frac{1}{7}}$ donc $S = \{3^{\frac{1}{7}}\}$

De façon plus générale, pour x > 0: $x^n = a$ a pour solution $x = a^{\frac{1}{n}}$

V) Résolution d'inéquations à l'aide du logarithme décimal

Pour a > 0 et b > 0:

 $\log(a) > \log(b)$ si et seulement si à a > b

log(a) < log(b) si et seulement si à a > b

 $\log(a) \ge \log(b)$ si et seulement si à $a \ge b$

 $\log(a) \le \log(b)$ si et seulement si à $a \le b$

Exemples:

Exemple 1 : Résoudre dans \mathbb{R} l'équation : $5^x < 3$

Réponse : $5^x < 3$ si et seulement si $\log(5^x) < \log(3)$ (on utilise la propriété a < b si et seulement si : $\log a < \log b$) Or $\log(a^n) = n \log(a)$ donc

 $x\log(5) < \log(3) \text{ donc } x < \frac{\log(3)}{\log(5)}$ ($\log(5) > 0$ donc le sens ne change pas lorsqu'on divise par $\log(5)$)

donc
$$S =]-\infty; \frac{\log(3)}{\log(5)}[$$

Exemple 2 : Résoudre dans \mathbb{R} l'équation : $0.5^x \le 2$

Réponse : $0.5^x \le 2$ si et seulement si $\log(0.5^x) \le \log(2)$ (on utilise la propriété $a \le b$ si et seulement si : $\log a \le \log b$) Or $\log(a^n) = n \log(a)$ donc

$$x\log(0.5) \le \log(2) \text{ donc } x \ge \frac{\log(2)}{\log(0.5)}$$
 ($\log(0.5) < 0$ donc le sens change lorsqu'on divise par $\log(0.5)$)

donc
$$S = \left[\frac{\log(2)}{\log(0.5)}; +\infty\right]$$

Exemple 3: Résoudre dans]0; $+\infty[$ l'équation : $x^7 \ge 3$

Réponse : $x^7 \ge 3$ si et seulement si $\log(x^7) \ge \log(3)$ (on utilise la propriété $a \ge b$ si et seulement si : $\log a \ge \log b$) Or $\log(a^n) = n \log(a)$ donc

 $7\log(x) \ge \log(3) \text{ donc } \log(x) \ge \frac{\log(3)}{7} \text{ Or } n\log(a) = \log(a^n) \text{ donc}$

 $\log(x) \ge \log(3^{\frac{1}{7}})$ si et seulement si $x \ge 3^{\frac{1}{7}}$ donc $S = [3^{\frac{1}{7}}; +\infty[$

VI) Taux d'évolution moyen

1) Propriété : Nous avons vu précédemment pour x > 0 :

$$x^n = a$$
 si et seulement si $x = a^{\frac{1}{n}}$

De même:

 $x^n > a$ si et seulement si $x > a^{\frac{1}{n}}$

2) Lien avec le taux d'évolution moyen

Exemple : Entre 2020 et 2024, le prix de l'électricité a augmenté de 59 %. Calculer le taux d'évolution moyen annuel.

Soit *t* le taux d'évolution annuel.

Le coefficient multiplicateur correspondant à une augmentation **sur un an** est égal à : $1 + \frac{t}{t}$

Le coefficient multiplicateur correspondant à une augmentation **sur quatre ans** (de 2020 à 2024) est égal à :

$$\left(1+\frac{t}{100}\right)\times\left(1+\frac{t}{100}\right)\times\left(1+\frac{t}{100}\right)\times\left(1+\frac{t}{100}\right)=\left(1+\frac{t}{100}\right)^4$$

Or, sur quatre années, le prix a augmenté de 59 % donc ce coefficient multiplicateur est également égal à : 1,59.

On a donc:

$$\left(1 + \frac{t}{100}\right)^4 = 1,59$$

$$1 + \frac{t}{100} = 1,59^{\frac{1}{4}}$$

$$\frac{t}{100} = 1,59^{\frac{1}{4}} - 1$$

$$t = 100 \times \left(1,59^{\frac{1}{4}} - 1\right)$$

$$t \approx 12,29 \%$$

Le taux d'évolution moyen annuel est environ égal 12,29 %.